LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

When, how, and why the path of an air bubble rising in pure water becomes unstable.

Photo by a2eorigins from unsplash

Recently, [Herrada, M. A. and Eggers, J. G., Proc. Natl. Acad. Sci. U.S.A. 120, e2216830120 (2023)] reported predictions for the onset of the path instability of an air bubble rising… Click to show full abstract

Recently, [Herrada, M. A. and Eggers, J. G., Proc. Natl. Acad. Sci. U.S.A. 120, e2216830120 (2023)] reported predictions for the onset of the path instability of an air bubble rising in water and put forward a physical scenario to explain this intriguing phenomenon. In this Brief Report, we review a series of previously established results, some of which were overlooked or misinterpreted by the authors. We show that this set of findings provides an accurate prediction and a consistent explanation of the phenomenon that invalidates the suggested scenario. The instability mechanism actually at play results from the hydrodynamic fluid-body coupling made possible by the unconstrained motion of the bubble which behaves essentially, in the relevant size range, as a rigid, nearly spheroidal body on the surface of which water slips freely.

Keywords: rising pure; water; bubble rising; air bubble; path air

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.