The conventional wisdom is that liquids are completely disordered and lack nontrivial structure beyond nearest-neighbor distances. Recent observations have upended this view and demonstrated that the microstructure in liquids is… Click to show full abstract
The conventional wisdom is that liquids are completely disordered and lack nontrivial structure beyond nearest-neighbor distances. Recent observations have upended this view and demonstrated that the microstructure in liquids is surprisingly rich and plays a critical role in numerous physical, biological, and industrial processes. However, approaches to uncover this structure are either system-specific or yield results that are not physically intuitive. Here, through single-particle resolved three-dimensional confocal microscope imaging and the use of a recently introduced four-point correlation function, we show that bidisperse colloidal liquids have a highly nontrivial structure comprising alternating layers with icosahedral and dodecahedral order, which extends well beyond nearest-neighbor distances and grows with supercooling. By quantifying the dynamics of the system on the particle level, we establish that it is this intermediate-range order, and not the short-range order, which has a one-to-one correlation with dynamical heterogeneities, a property directly related to the relaxation dynamics of glassy liquids. Our experimental findings provide a direct and much sought-after link between the structure and dynamics of liquids and pave the way for probing the consequences of this intermediate-range order in other liquid state processes.
               
Click one of the above tabs to view related content.