LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The DedA superfamily member PetA is required for the transbilayer distribution of phosphatidylethanolamine in bacterial membranes.

The sorting of phospholipids between the inner and outer leaflets of the membrane bilayer is a fundamental problem in all organisms. Despite years of investigation, most of the enzymes that… Click to show full abstract

The sorting of phospholipids between the inner and outer leaflets of the membrane bilayer is a fundamental problem in all organisms. Despite years of investigation, most of the enzymes that catalyze phospholipid reorientation in bacteria remain unknown. Studies from almost half a century ago in Bacillus subtilis and Bacillus megaterium revealed that newly synthesized phosphatidylethanolamine (PE) is rapidly translocated to the outer leaflet of the bilayer [Rothman & Kennedy, Proc. Natl. Acad. Sci. U.S.A. 74, 1821-1825 (1977)] but the identity of the putative PE flippase has eluded discovery. Recently, members of the DedA superfamily have been implicated in flipping the bacterial lipid carrier undecaprenyl phosphate and in scrambling eukaryotic phospholipids in vitro. Here, using the antimicrobial peptide duramycin that targets outward-facing PE, we show that Bacillus subtilis cells lacking the DedA paralog PetA (formerly YbfM) have increased resistance to duramycin. Sensitivity to duramycin is restored by expression of B. subtilis PetA or homologs from other bacteria. Analysis of duramycin-mediated killing upon induction of PE synthesis indicates that PetA is required for efficient PE transport. Finally, using fluorescently labeled duramycin we demonstrate that cells lacking PetA have reduced PE in their outer leaflet compared to wildtype. We conclude that PetA is the long-sought PE transporter. These data combined with bioinformatic analysis of other DedA paralogs argue that the primary role of DedA superfamily members is transporting distinct lipids across the membrane bilayer.

Keywords: duramycin; superfamily member; deda superfamily; peta required; phosphatidylethanolamine

Journal Title: Proceedings of the National Academy of Sciences of the United States of America
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.