ABSTRACT Rapid and accurate determination of hydrogen peroxide is necessary in biochemistry and environmental science. In this paper, a sensitive hydrogen peroxide electrochemical sensor was developed by cyclic voltammetry deposition… Click to show full abstract
ABSTRACT Rapid and accurate determination of hydrogen peroxide is necessary in biochemistry and environmental science. In this paper, a sensitive hydrogen peroxide electrochemical sensor was developed by cyclic voltammetry deposition of polyaniline–copper nanocomposite film on a glassy carbon electrode. The synthesized polyaniline/Cu composites were characterized by scanning electron microscopy and X-ray diffraction. With a typical working potential of 0.4 V (versus Ag/AgCl) and a pH value of 6.0, the prepared electrochemical sensor achieved linear range of 1.0–500 µM for hydrogen peroxide detection. A relative standard deviation of 4.9% for n = 7 and 10.0 µM of H2O2 and a limit of detection of 0.33 µM at a signal-to-noise ratio = 3 were observed. The sensor was successfully used for the analysis of tap water, and a spiked recovery of 93.0 ± 2.1% was obtained, further confirming the sensor’s accuracy and feasibility.
               
Click one of the above tabs to view related content.