ABSTRACT One of the most popular applications of a bi-axial motion stage is precision motion control. The reduction of tracking error and contour error is one of the most coveted… Click to show full abstract
ABSTRACT One of the most popular applications of a bi-axial motion stage is precision motion control. The reduction of tracking error and contour error is one of the most coveted goals in precision motion control systems. The accuracy of a motion control system is often affected by external disturbances. In addition, system non-linearity such as friction also represents a major hurdle to motion precision. In order to deal with the aforementioned problem, this paper proposes a fuzzy logic-based Reinforcement Iterative Learning Control (RILC) and a Cross-Coupled Cerebellar Model Articulation Controller (CCCMAC). In particular, the proposed fuzzy logic-based RILC and a LuGre friction model-based compensation approach are exploited to improve motion accuracy. The fuzzy logic-based RILC aims at reducing tracking error and compensating for external disturbance, while the LuGre friction model is responsible for friction compensation. In addition, the CCCMAC consisting of a cerebellar model articulation controller and a cross-coupled controller aims at reducing contour error and dealing with the problem of dynamics mismatch between different axes. Performance comparisons between the proposed fuzzy logic-based Reinforcement Iterative Learning Cross-Coupled Cerebellar Model Articulation Controller (RIL–CCCMAC) and several existing control schemes are conducted on a bi-axial motion stage. Experimental results verify the effectiveness of the proposed RIL–CCCMAC.
               
Click one of the above tabs to view related content.