ABSTRACT 1. Innate immunity provides the first line of defence against pathogenic organisms through a myriad of germline encoded receptors called pattern-recognition receptors (PRRs). Toll-like receptor (TLR) 3, as an… Click to show full abstract
ABSTRACT 1. Innate immunity provides the first line of defence against pathogenic organisms through a myriad of germline encoded receptors called pattern-recognition receptors (PRRs). Toll-like receptor (TLR) 3, as an important member of PRRs, is indispensable for host defence against viral infection by recognising virus-derived RNAs. However, little is known about the structure and function of TLR3 in ducks (Anas platyrhynchos), a natural host for the avian influenza virus. 2. This study cloned the full-length cDNA of duck TLR3 using reverse transcription polymerase chain reaction (RT-PCR) with rapid amplification of cDNA ends (RACE). The cDNA sequence of duck TLR3 was 4046 bp in length and encoded 895 amino acids. Multiple sequence alignment showed that duck TLR3 shared high similarity with that from other vertebrates. 3. Quantitative real-time PCR (qRT-PCR) analysis suggested that TLR3 mRNA was constitutively expressed in all tissues tested, having higher levels in the kidney, liver, breast muscle, ovary and heart. After stimulation with viral- or bacterial-mimics, including LPS, poly(I:C), pam3CSK4, FLS-1, FLA-ST and R848, the TLR3 transcript was significantly upregulated. Meanwhile, overexpression of duck TLR3 significantly promoted the transcription of IFN-β, IRF7, TRIF, Mx, STAT1 and STAT2 mRNA after stimulation with poly(I:C). 4. These results suggested that TLR3 play an important role in resistance against viral and bacterial infections in ducks.
               
Click one of the above tabs to view related content.