LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The effects of ultrasonic vibration on mechanical properties of tungsten particle-reinforced copper-matrix composites

Photo from wikipedia

ABSTRACT W-Cu micro-powder mixtures usually have poor sinterability due to the relatively low solubility of W in both solid and liquid Cu. In fabricating W-Cu composites, an electroless copper plating… Click to show full abstract

ABSTRACT W-Cu micro-powder mixtures usually have poor sinterability due to the relatively low solubility of W in both solid and liquid Cu. In fabricating W-Cu composites, an electroless copper plating process is often used to coat Cu on the W particle surface prior to the sintering process. Due to their small size W particles tend to agglomerate during the plating process, hence the individual particle may not be properly coated with Cu. In this study, ultrasonic vibration is applied in the electroless plating process to break up the agglomerations and restrain the powders from gathering, ensuring a uniform deposition of the Cu on individual W particle. W-Cu composite samples containing pure Cu and 6, 9 and 12 wt-% of Cu-coated W particles, respectively, are fabricated using a standard powder metallurgy technique. It is shown that the application of ultrasonic vibration in the activation and deposition steps of the electroless copper plating process prevents W powder agglomeration and ensures that each W particle is coated with Cu. As a result, the mechanical properties of the W-Cu composites are significantly improved. It is found that the optimal tensile strength and yield strength are obtained using a W reinforcement phase content of 9 wt-%.

Keywords: ultrasonic vibration; plating process; particle; mechanical properties

Journal Title: Canadian Metallurgical Quarterly
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.