LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Maritime autonomous surface ships: can we learn from unmanned aerial vehicle incidents using the perceptual cycle model?

Photo from wikipedia

Abstract Interest in Maritime Autonomous Surface Ships (MASS) is increasing as it is predicted that they can bring improved safety, performance and operational capabilities. However, their introduction is associated with… Click to show full abstract

Abstract Interest in Maritime Autonomous Surface Ships (MASS) is increasing as it is predicted that they can bring improved safety, performance and operational capabilities. However, their introduction is associated with a number of enduring Human Factors challenges (e.g. difficulties monitoring automated systems) for human operators, with their ‘remoteness’ in shore-side control centres exacerbating issues. This paper aims to investigate underlying decision-making processes of operators of uncrewed vehicles using the theoretical foundation of the Perceptual Cycle Model (PCM). A case study of an Unmanned Aerial Vehicle (UAV) accident has been chosen as it bears similarities to the operation of MASS through means of a ground-based control centre. Two PCMs were developed; one to demonstrate what actually happened and one to demonstrate what should have happened. Comparing the models demonstrates the importance of operator situational awareness, clearly defined operator roles, training and interface design in making decisions when operating from remote control centres. Practitioner Summary: To investigate underlying decision-making processes of operators of uncrewed vehicles using the Perceptual Cycle Model, by using an UAV accident case study. The findings showed the importance of operator situational awareness, clearly defined operator roles, training and interface design in making decisions when monitoring uncrewed systems from remote control centres.

Keywords: perceptual cycle; autonomous surface; cycle model; maritime autonomous

Journal Title: Ergonomics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.