LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chronological constraints on the tectonic evolution of the Chinese Tianshan Orogen through detrital zircons from modern and palaeo-river sands

Photo by kazuend from unsplash

ABSTRACT The Chinese Tianshan Orogen marks prolonged and complicated interactions between the southwestern Palaeo-Asian Ocean and surrounding blocks. New and previously published detrital zircon chronological data from modern and palaeo-river… Click to show full abstract

ABSTRACT The Chinese Tianshan Orogen marks prolonged and complicated interactions between the southwestern Palaeo-Asian Ocean and surrounding blocks. New and previously published detrital zircon chronological data from modern and palaeo-river sands were compiled to reveal its tectonic evolution. It is characterized by predominant Palaeozoic as well as minor Mesozoic and Precambrian detrital zircon ages with a multimodal characteristic. The oldest Phanerozoic zircon population (peaking at 475 Ma) is a result of subduction and closure of the early Palaeozoic Terskey Ocean. However, the absence of this peak in the Chinese North and southern South Tianshan suggests that subductions of the North and South Tianshan oceans may not have initiated until the Late Ordovician with subsequent 460–390 and 360–320 Ma arc magmatism. Similar to the magmatic suite in classic collisional orogens, the youngest massive 320–270 Ma magmatism is suggested to be post-collisional. The North and South Tianshan oceans therefore probably had their closure to form the Chinese Tianshan Orogen during the late Carboniferous. The weak Mesozoic intra-plate magmatism further rejects a late Permian–Triassic Tianshan Orogen due to a lack of extensive syn- and post-collisional magmatism. Moreover, diverse Precambrian detrital zircon age patterns indicate that the surrounding blocks have distinct evolutionary processes with short-term amalgamation during the Meso- to Neoproterozoic.

Keywords: modern palaeo; palaeo river; chinese tianshan; tianshan orogen; river sands; orogen

Journal Title: International Geology Review
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.