ABSTRACT We present new data for the Neoproterozoic mafic intrusion exposed in Wadi Nasb, south Sinai, Egypt (northernmost Arabian–Nubian Shield; ANS). The Nasb mafic intrusion (NMI) intrudes metasediments, Rutig volcanics,… Click to show full abstract
ABSTRACT We present new data for the Neoproterozoic mafic intrusion exposed in Wadi Nasb, south Sinai, Egypt (northernmost Arabian–Nubian Shield; ANS). The Nasb mafic intrusion (NMI) intrudes metasediments, Rutig volcanics, and diorite/granodiorite, and is intruded in turn by younger monzogranite and quartz-monzonite. Available geochronological data for the country rocks of the NMI provide a tight constraint on its age, between 619 and 610 Ma, during the hiatus between the lower and upper Rutig volcanics. The NMI is neither deformed nor metamorphosed, indicating post-collisional emplacement, and uralitization by late-magmatic and sub-solidus alteration is restricted to the margins of the intrusion. A quantitative fractionation model indicates a fractionating assemblage of 61% primary amphibole, 10% clinopyroxene, 28% plagioclase, 1% biotite, 0.4% apatite, and 0.15% Fe-Ti oxide. Contrary to the recent studies, we find that the nearby diorite of Gebel Sheikh El-Arab is not co-genetic with the appinitic gabbro of the NMI. Although there are volcanic xenoliths in the NMI, we find no chemical evidence requiring contamination by continental crust. A subduction-related signature in a post-orogenic intrusion requires the inheritance of geochemical tendencies from a previous subduction phase. Given that the fine-grained gabbro of the NMI is consistent with a near-primary mantle melt, we attribute this inheritance to persistence and later melting of the slab-modified mantle domains, as opposed to partial melting and assimilation of the juvenile continental crust. The fine-grained gabbro composition indicates derivation at temperature and pressure conditions similar to the sources of mid-ocean ridge basalts: mantle potential temperature near 1350°C and extent of melting about 7%. Such temperatures, neither so high as to require a plume nor so low as to be consistent with small degrees of melting of a volatile-rich source, are most consistent with a lithospheric delamination scenario, allowing the upwelling of fertile, subduction-modified asthenosphere to depths ≤50 km.
               
Click one of the above tabs to view related content.