LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Convergence and stability of split-step theta methods with variable step-size for stochastic pantograph differential equations

Photo by omarprestwich from unsplash

ABSTRACT In this paper, we are interested in numerical methods with variable step-size for stochastic pantograph differential equations (SPDEs). SPDEs are very special stochastic delay differential equations (SDDEs) with unbounded… Click to show full abstract

ABSTRACT In this paper, we are interested in numerical methods with variable step-size for stochastic pantograph differential equations (SPDEs). SPDEs are very special stochastic delay differential equations (SDDEs) with unbounded memory. The problem of computer memory hold, when the numerical methods with constant step-size are applied to the SPDEs. In this work, we construct split-step theta (SSθ) methods with variable step-size for SPDEs. The boundedness and strong convergence of the numerical methods are investigated under a local Lipschitz condition and a coupled condition on the drift and diffusion coefficients. It is proved that, the SSθ methods with variable step-size for converge strongly to the exact solution. In addition, the strong order 0.5 is given under mild assumptions. The mean-square stability (MS-Stability) of the numerical methods with is given. Finally, some illustrative numerical examples are presented to show the efficiency of the methods, and how MS-Stability of SSθ methods depends on the parameter theta for both linear and nonlinear models.

Keywords: methods variable; step; step size; stability; variable step

Journal Title: International Journal of Computer Mathematics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.