A trigonometric quintic B-spline method is proposed for the solution of a class of turning point singularly perturbed boundary value problems (SP-BVPs) whose solution exhibits either twin boundary layers near… Click to show full abstract
A trigonometric quintic B-spline method is proposed for the solution of a class of turning point singularly perturbed boundary value problems (SP-BVPs) whose solution exhibits either twin boundary layers near both endpoints of the interval of consideration or an interior layer near the turning point. To resolve the boundary/interior layer(s) trigonometric quintic B-spline basis functions are used with a piecewise-uniform mesh generated with the help of a transition parameter that separates the layer and regular regions. The proposed method reduces the problem into a system of algebraic equations which can be written in matrix form with the penta-diagonal coefficient matrix. The well-known fast penta-diagonal system solver algorithm is used to solve the system. The method is shown almost fourth-order convergent irrespective of the size of the diffusion parameter ϵ. The theoretical error bounds are verified by taking some relevant test examples computationally.
               
Click one of the above tabs to view related content.