LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the fractional calculus of multivariate Mittag-Leffler functions

Photo from wikipedia

ABSTRACT Multivariate Mittag-Leffler functions are a strong generalisation of the univariate and bivariate Mittag-Leffler functions which are known to be important in fractional calculus. We consider the general functional operator… Click to show full abstract

ABSTRACT Multivariate Mittag-Leffler functions are a strong generalisation of the univariate and bivariate Mittag-Leffler functions which are known to be important in fractional calculus. We consider the general functional operator defined by an integral transform with a multivariate Mittag-Leffler function in the kernel. We prove an expression for this operator as an infinite series of Riemann–Liouville integrals, thereby demonstrating that it fits into the established framework of fractional calculus, and we show the power of this series formula by straightforwardly deducing many facts, some new and some already known but now more quickly proved, about the original integral operator. We illustrate our work here by calculating some examples both analytically and numerically, and comparing the results on graphs. We also define fractional derivative operators corresponding to the established integral operator. As an application, we consider some Cauchy-type problems for fractional integro-differential equations involving this operator, where existence and uniqueness of solutions can be proved using fixed point theory. Finally, we generalise the theory by applying the same operators with respect to arbitrary monotonic functions.

Keywords: mittag leffler; leffler functions; fractional calculus; multivariate mittag; mittag

Journal Title: International Journal of Computer Mathematics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.