ABSTRACT This paper presents an efficient model reduction method for time-delay systems in the time domain. We expand the systems under a Hermite polynomial basis and show that Hermite coefficients… Click to show full abstract
ABSTRACT This paper presents an efficient model reduction method for time-delay systems in the time domain. We expand the systems under a Hermite polynomial basis and show that Hermite coefficients of the expansion are determined by a linear equation, thus can be calculated efficiently. Such linear relationship is well taken in the projection methods of model reduction, and reduced models are generated to preserve a desired number of Hermite coefficients in the time domain, in contrast to other existing techniques which aim at approximating the transfer function of time-delay systems in the frequency domain. We also exploit two-sided projections for time-delay systems, leading to a hybrid reduction method which generates reduced models sharing the nice properties both in the time and frequency domains. Two numerical examples illustrate the feasibility and effectiveness of the approach.
               
Click one of the above tabs to view related content.