ABSTRACT Moving horizon estimation (MHE) solves a constrained dynamic optimisation problem. Including nonlinear dynamics into an optimal estimation problem generally comes at the cost of tackling a non-convex optimisation problem.… Click to show full abstract
ABSTRACT Moving horizon estimation (MHE) solves a constrained dynamic optimisation problem. Including nonlinear dynamics into an optimal estimation problem generally comes at the cost of tackling a non-convex optimisation problem. Here, a particular model formulation is proposed in order to convexify a class of nonlinear MHE problems. It delivers a linear time-varying (LTV) model that is globally equivalent to the nonlinear dynamics in a noise-free environment, hence the optimisation problem becomes convex. On the other hand, in the presence of unknown disturbances, the accuracy of the LTV model degrades and this results in a less accurate solution. For this purpose, some assumptions are imposed and a homotopy-based approach is proposed in order to transform the problem from convex to non-convex, where the sequential implementation of this technique starts with solving the convexified MHE problem. Two simulation studies validate the efficiency and optimality of the proposed approach with unknown disturbances.
               
Click one of the above tabs to view related content.