ABSTRACT In this paper, we introduce a new class of backward doubly stochastic differential equations (in short BDSDE) called mean-field backward doubly stochastic differential equations (in short MFBDSDE) driven by… Click to show full abstract
ABSTRACT In this paper, we introduce a new class of backward doubly stochastic differential equations (in short BDSDE) called mean-field backward doubly stochastic differential equations (in short MFBDSDE) driven by Itô-Lévy processes and study the partial information optimal control problems for backward doubly stochastic systems driven by Itô-Lévy processes of mean-field type, in which the coefficients depend on not only the solution processes but also their expected values. First, using the method of contraction mapping, we prove the existence and uniqueness of the solutions to this kind of MFBDSDE. Then, by the method of convex variation and duality technique, we establish a sufficient and necessary stochastic maximum principle for the stochastic system. Finally, we illustrate our theoretical results by an application to a stochastic linear quadratic optimal control problem of a mean-field backward doubly stochastic system driven by Itô-Lévy processes.
               
Click one of the above tabs to view related content.