LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of residual transmit RF impairments on energy harvesting relay selection systems

Photo by mbrunacr from unsplash

ABSTRACT In this paper, we study the impact of residual transmit radio-frequency impairments (RTRIs) on a dual-hop energy-harvesting system in which a source and a destination both having multiple antennas… Click to show full abstract

ABSTRACT In this paper, we study the impact of residual transmit radio-frequency impairments (RTRIs) on a dual-hop energy-harvesting system in which a source and a destination both having multiple antennas communicate to each other with the help of single-antenna amplify-and-forward (AF) relays. The source and destination employ maximum ratio transmission (MRT) and maximal ratio combining (MRC), respectively, to exploit the benefits of using multiple antennas. To simplify the system complexity, we propose two partial relay selection (PRS) schemes (RSSs) that maximise the combined channel gains of the first hop (PRS-1 scheme) and the second hop (PRS-2 scheme), respectively. Both time-switching relaying (TSR) and power-splitting relaying (PSR) protocols are examined. In order to evaluate the system performance, the analytical expressions for outage probability and ergodic capacity are derived, and then the throughput expressions for delay-limited and delay-tolerant transmission modes are formulated. The analytical results are validated by Monte Carlo simulations. Our results show that: (1) The impact of RTRI can be significantly reduced by increasing the number of antennas and relays. (2) The PRS-1 scheme outperforms the PRS-2 scheme. (3) In the delay-limited mode, the TSR protocol performs better than the PSR protocol at high impairment levels, whereas in the delay-tolerant mode, the throughput of the PSR protocol is superior to that of the TSR protocol.

Keywords: residual transmit; energy harvesting; prs scheme; impact residual; relay selection

Journal Title: International Journal of Electronics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.