Abstract Background: Guillain-Barré syndrome (GBS), an autoimmune disease and an acute inflammation disorder, is currently the most frequent cause of acute flaccid paralysis worldwide. EAN, an animal model of GBS,… Click to show full abstract
Abstract Background: Guillain-Barré syndrome (GBS), an autoimmune disease and an acute inflammation disorder, is currently the most frequent cause of acute flaccid paralysis worldwide. EAN, an animal model of GBS, is a CD4+ T cell-mediated autoimmune disease of the PNS. Wnt/β-catenin signals are critically important to several fundamental aspects of peripheral nerve development and play a crucial role in Schwann cell proliferation. Here, we investigate the role of Wnt/β-catenin signalling cascades in EAN rats. Methods: 28 male Lewis rats weighing 170 ± 10 g were randomly divided into control group (n = 7) and EAN groups (Early group; Peak group and Recovery group. n = 7 per group). EAN rats were immunized with P257-81 peptide; weighed daily, and the neurologic signs of EAN were evaluated every day. The sciatic nerve was taken on the days 10, 17, and 30 p.i. for H&E staining, transmission electron microscopy and immunohistochemical staining; blood samples were collected weekly from caudal vein to detect IFN-γ, IL-4, TGF-β1; and the sciatic nerve was taken to examinate the dynamics expression of Wnt/β-catenin pathway molecules. Results: In our study, we chose tail-root injection to better model GBS. Moreover, we observed that IFN-γ levels paralleled clinical EAN, and the levels of TGF-β1 and IL-4 gradually increased and peaked in the recovery phase. In addition, we have shown that canonical Wnt signalling is upregulated and reached a peak in the late recovery phase. Conclusion: Our findings suggest that Wnt/β-catenin signalling is associated with the promotion of remyelination in EAN rats.
               
Click one of the above tabs to view related content.