LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The model of maintenance planning and production scheduling for maximising robustness

Photo from wikipedia

The accuracy of prediction and detection capability have a strong influence over the efficiency of the bottleneck, all equipment and the production system. The function of predictive scheduling is to… Click to show full abstract

The accuracy of prediction and detection capability have a strong influence over the efficiency of the bottleneck, all equipment and the production system. The function of predictive scheduling is to obtain stable and robust schedules for a shop floor. The first objective is to present an innovative maintenance planning and production scheduling method. The approach consists of four modules: a database to collect information about failure-free times, a prediction module of failure-free times, predictive scheduling and rescheduling module, a module for evaluating the accuracy of prediction and maintenance performance. The second objective is to apply the proposed methods for a job shop scheduling problem. Usually, researchers who are concerned about maintenance scheduling do not take unexpected disturbances into account. They assume that machines are always available for processing tasks during the future-planned production time. Moreover, researches use the criteria that are not effective to deal with the situation of unpredicted failures. In this paper, a method based on probability theory is proposed for maintenance scheduling. For unpredicted failures, a rescheduling method is also proposed. The evaluation module which gives information about the degradation of each performance measure and the stability of a schedule is proposed.

Keywords: production; maintenance; maintenance planning; planning production; production scheduling

Journal Title: International Journal of Production Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.