Nowadays, manufacturing firms need the reconfigurability capability to be responsive in the current context characterised by unpredictable and frequent market changes and the reduction of product life cycle. Despite the… Click to show full abstract
Nowadays, manufacturing firms need the reconfigurability capability to be responsive in the current context characterised by unpredictable and frequent market changes and the reduction of product life cycle. Despite the relevance of the subject, a challenge for practitioners is the development of a strategy aimed to increase the level of reconfigurability with long-term goals of customisation and responsiveness. Moreover, traditional manufacturing paradigms are disrupted by the transformation of manufacturing systems in cyber-physical systems (CPS), thus introducing innovative means also to increase the level of reconfigurability in manufacturing systems. This study investigates how the technologies underlying CPS support the reconfigurability capability along system life cycle. Thus the technologies underlying CPS are classified into seven categories and it is shown how they enable the sequence of utilisation of the reconfigurability characteristics (modularity, integrability, diagnosability, scalability, convertibility and customisation) along the system life cycle. The results of the study can guide practitioners in developing reconfigurability as a strategic capability. Moreover, different directions for future research can be considered, as discussed in the conclusion.
               
Click one of the above tabs to view related content.