LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Constrained anti-disturbance control for a quadrotor based on differential flatness

Photo from wikipedia

ABSTRACT The classical control design based on linearised model is widely used in practice even to those inherently nonlinear systems. Although linear design techniques are relatively mature and enjoy the… Click to show full abstract

ABSTRACT The classical control design based on linearised model is widely used in practice even to those inherently nonlinear systems. Although linear design techniques are relatively mature and enjoy the simple structure in implementations, they can be prone to misbehaviour and failure when the system state is far away from the operating point. To avoid the drawbacks and exploit the advantages of linear design methods while tackling the system nonlinearity, a hybrid control structure is developed in this paper. First, the model predictive control is used to impose states and inputs constraints on the linearised model, which makes the linearisation satisfy the small-perturbation requirement and reduces the bound of linearisation error. On the other hand, a combination of disturbance observer-based control and H∞ control, called composite hierarchical anti-disturbance control, is constructed for the linear model to provide robustness against multiple disturbances. The constrained reference states and inputs generated by the outer-loop model predictive controller are asymptotically tracked by the inner-loop composite anti-disturbance controller. To demonstrate the performance of the proposed framework, a case study on quadrotor is conducted.

Keywords: quadrotor; control; model; anti disturbance; disturbance control; disturbance

Journal Title: International Journal of Systems Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.