ABSTRACT The paper proposes a novel method for the nonlinear redundantly actuated parallel robot based on force/position hybrid control structure. In order to solve the limitation of making a compromise… Click to show full abstract
ABSTRACT The paper proposes a novel method for the nonlinear redundantly actuated parallel robot based on force/position hybrid control structure. In order to solve the limitation of making a compromise for internal model controller, a two-DOF fractional order internal model control algorithm combining the internal model control principle and the fractional order theory is proposed for the position branch of the parallel robot redundantly actuated. This algorithm can realise the adjustment of the dynamic performance and anti-interference of 6PUS-UPU respectively. Aiming at the big force control error fractional order internal model, fuzzy control theory and the fractional order internal model controller are integrated into a new controller-fuzzy fractional order internal model(FFOIM) force control algorithm. Then Admas/Matlab simulation results demonstrate that the proposed algorithm can further reduce the driving force error of the system, and also retain the strong anti-interference of fractional order internal model controller.
               
Click one of the above tabs to view related content.