ABSTRACT This paper investigates the parameter estimation problem for multivariate output-error systems perturbed by autoregressive moving average noises. Since the identification model has two different kinds of parameters, a vector… Click to show full abstract
ABSTRACT This paper investigates the parameter estimation problem for multivariate output-error systems perturbed by autoregressive moving average noises. Since the identification model has two different kinds of parameters, a vector and a matrix, the gradient algorithm cannot be used directly. Therefore, we decompose the original system model into two sub-models and proceed the identification problem by the collaboration between the two sub-models. By employing the gradient search and determining the optimal step-sizes, we present an auxiliary model based two-stage projection algorithm. However, in order to alleviate the sensitivity to the noise, we reselect the step-sizes and derive the auxiliary model based two-stage stochastic gradient (AM-2S-SG) algorithm. Based on the AM-2S-SG algorithm, an auxiliary model based two-stage multi-innovation stochastic gradient algorithm is proposed to generate more accurate estimates. Finally, numerical simulations are provided to demonstrate the effectiveness of the proposed algorithms.
               
Click one of the above tabs to view related content.