LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ISS of predictor feedback for multi-input affine nonlinear systems with distinct input delays

Photo by charlesdeluvio from unsplash

We develop a predictor feedback control scheme for multi-input affine nonlinear systems with distinct input delays in each individual input channel and additive disturbances. The input-to-state stable control Lyapunov function… Click to show full abstract

We develop a predictor feedback control scheme for multi-input affine nonlinear systems with distinct input delays in each individual input channel and additive disturbances. The input-to-state stable control Lyapunov function (ISS-CLF) is used to design control laws for the delay-free affine nonlinear systems. Then, a predictor-feedback controller is constructed for this class of nonlinear systems with input delays. We establish input-to-state stability with respect to additive plant disturbances, as well as we show that the control law derives gain margin guarantees. Our proofs are based on the infinite-dimensional backstepping transformation and the construction of a Lyapunov functional. The developed method is applied to the control of vehicular traffic flow at distant bottlenecks.

Keywords: affine nonlinear; control; input; predictor feedback; input delays; nonlinear systems

Journal Title: International Journal of Systems Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.