LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-order fully actuated system approaches: Part II. Generalized strict-feedback systems

Photo from wikipedia

An advantage of a high-order fully-actuated (HOFA) system is that there exists a controller such that a constant linear closed-loop system with an arbitrarily assignable eigenstructure can be obtained. In… Click to show full abstract

An advantage of a high-order fully-actuated (HOFA) system is that there exists a controller such that a constant linear closed-loop system with an arbitrarily assignable eigenstructure can be obtained. In this paper, a generalised form of the conventional first-order strict-feedback systems (SFSs) is firstly proposed, and a recursive solution is proposed to convert equivalently the generalised SFS into a HOFA model. Then the second- and high-order SFSs are defined and their equivalent HOFA models are also derived. It is further shown that, under certain common conditions, the recursive solutions for converting the generalised SFSs into HOFA models can be rearranged into direct analytical explicit solutions. Such a high-order system approach is more direct and simpler than the first-order system approach since it avoids the process of converting firstly these second- and high-order SFSs into first-order ones for control, and can finally produce a constant linear closed-loop system. Particularly, it is more effective than the well-known method of backstepping since, for the generalised complicated SFSs with more subsystems, the method of backstepping may simply be not applicable due to more serious ‘differential explosion’ problem. Two examples are worked out to demonstrate the effect of the approach.

Keywords: order; system; fully actuated; order fully; strict feedback; high order

Journal Title: International Journal of Systems Science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.