ABSTRACT Recent work provides clues that different cortical mechanisms may be employed when correcting for errors in sensorimotor synchronization that increase tap-tone asynchrony compared with those that decrease it. The… Click to show full abstract
ABSTRACT Recent work provides clues that different cortical mechanisms may be employed when correcting for errors in sensorimotor synchronization that increase tap-tone asynchrony compared with those that decrease it. The authors tested this hypothesis by recording 64-channel electroencephalography while participants synchronized with an auditory metronome. We systematically introduced positive and negative phase-shift perturbations that were either liminal (10%) and subliminal (3%). We used a distributed source modeling approach to evaluate oscillatory activity and connectivity of discrete cortical sources. Three key findings support our hypothesis. First was a theta band response indicative of error detection and top-down control observed in frontomedial presupplementary motor area (pre-SMA) and anterior cingulate for liminal positive perturbations. Second was an increase in theta band coupling between the SMA and contralateral motor cortex exclusively for positive perturbations suggesting a top-down modulation of motor parameters. Third, when compared with other conditions, liminal positive perturbations result in an increase in postmovement beta rebound within contralateral primary motor cortex. The authors propose that frontomedial motor areas exert a top-down inhibitory influence over the primary motor cortex to effectively lengthen tap intervals in response to lengthening tap-tone asynchronies.
               
Click one of the above tabs to view related content.