ABSTRACT An analysis of the responses of the containment during a station blackout accident is performed for the APR1400 nuclear power plant using MELCOR 2.1. The analysis results show that… Click to show full abstract
ABSTRACT An analysis of the responses of the containment during a station blackout accident is performed for the APR1400 nuclear power plant using MELCOR 2.1. The analysis results show that the containment failure occurs at about 84.14 h. Prior to the failure of the reactor vessel, the containment pressure increases slowly. Then, a rapid increase of the containment pressure occurs when a large amount of hot molten corium is discharged from the reactor pressure vessel to the cavity. The molten corium concrete interaction (MCCI) is arrested when water is flooded over a molten corium in the cavity. The boiling of water in the cavity causes a fast increase in the containment pressure. During the early phase of the accident, a large amount of steam is condensed inside the containment due to the presence of the heat structures. This results in a mitigation of a containment pressure increase. During the late phase, the containment pressure increases gradually due to the addition of steam and gases from an MCCI and water evaporation. It was found that two-thirds of the total mass of steam and gases in the containment is from an MCCI and one-third of the mass is from water evaporation.
               
Click one of the above tabs to view related content.