ABSTRACT To evaluate the oxidation behavior of high-burnup advanced fuel cladding tubes in high-temperature steam, laboratory-scale isothermal oxidation tests were conducted using the following advanced fuel cladding tubes with burnups… Click to show full abstract
ABSTRACT To evaluate the oxidation behavior of high-burnup advanced fuel cladding tubes in high-temperature steam, laboratory-scale isothermal oxidation tests were conducted using the following advanced fuel cladding tubes with burnups of up to 85 GWd/t: M-MDATM, low-tin ZIRLOTM, M5®, and Zircaloy-2 (LK3). These oxidation tests were performed in steam-flowing conditions at temperatures ranging from 1173 to 1473 K for durations between 120 and 4000 s, and the oxidation kinetics was evaluated. The oxidation kinetics of the high-burnup advanced fuel cladding tube specimens estimated by assuming the parabolic rate law was comparable to or slower than that of the unirradiated Zircaloy-4 cladding tube specimens reported in a previous study. It is considered that the protective effect of the corrosion layer hindered oxidation. Furthermore, no increase in the oxidation kinetics because of the pre-hydriding was observed. The onset times of the breakaway oxidations of these cladding tube specimens were comparable to those of the unirradiated Zircaloy-4 cladding tubes reported in previous studies. Therefore, it is considered that the burnup extension up to 85 GWd/t and the use of the advanced fuel cladding tubes do not significantly increase the oxidation kinetics and do not significantly reduce the onset time of the breakaway oxidation.
               
Click one of the above tabs to view related content.