LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bayesian framework for fault variable identification

Photo by mariusoprea from unsplash

Abstract In most manufacturing processes, identifying the faulty process variables that may lead to process changes is crucial for quality engineers and practitioners. There are several parametric procedures for identifying… Click to show full abstract

Abstract In most manufacturing processes, identifying the faulty process variables that may lead to process changes is crucial for quality engineers and practitioners. There are several parametric procedures for identifying faulty variables with the assumption that they follow multivariate normal distributions. However, in practice, the normality assumption restricts the applicability of such procedures in identifying the faulty variables. In addition, conventional procedures for fault identification are often computationally expensive, especially in high-dimensional processes. Therefore, this article proposes a data-driven Bayesian approach for fault identification that addresses the limitations posed by the normality assumption. The proposed approach is computationally efficient for high-dimensional data compared with existing approaches. Experimental results with various simulation studies and real-life data sets demonstrate the effectiveness of the proposed procedure.

Keywords: fault; identifying faulty; framework fault; fault variable; identification; bayesian framework

Journal Title: Journal of Quality Technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.