LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Entropy of flexible liquids from hierarchical force–torque covariance and coordination

Photo from wikipedia

ABSTRACT New theory is presented to calculate the entropy of a liquid of flexible molecules from a molecular dynamics simulation. Entropy is expressed in two terms: a vibrational term, representing… Click to show full abstract

ABSTRACT New theory is presented to calculate the entropy of a liquid of flexible molecules from a molecular dynamics simulation. Entropy is expressed in two terms: a vibrational term, representing the average number of configurations and momentum states in an energy well, and a topographical term, representing the effective number of energy wells. The vibrational term is derived in a hierarchical manner from two force–torque covariance matrices, one at the molecular level and one at the united-atom level. The topographical term comprises conformations and orientations, which are derived from the dihedral distributions and coordination numbers, respectively. The method is tested on 14 liquids, ranging from argon to cyclohexane. For most molecules, our results lie within the experimental range, and are slightly higher than those by the 2PT method, the only other method currently capable of directly calculating entropy for such systems. As well as providing an efficient and practical way to calculate entropy, the theory serves to give a comprehensive characterisation and quantification of molecular structure.

Keywords: torque covariance; force torque; term; entropy

Journal Title: Molecular Physics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.