LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Low-lying electronic terms of diatomic molecules AB (A = Sc–Ni, B = Cu/Ag/Au)

Photo by topdata from unsplash

Low-lying electronic terms of 24 heteronuclear diatomic molecules AB (A = Sc–Ni, B = Cu/Ag/Au) have been systematically studied. Scalar relativistic effects were included by use of the spin-free Douglas–Kroll–Hess (DKH) Hamiltonian. The complete… Click to show full abstract

Low-lying electronic terms of 24 heteronuclear diatomic molecules AB (A = Sc–Ni, B = Cu/Ag/Au) have been systematically studied. Scalar relativistic effects were included by use of the spin-free Douglas–Kroll–Hess (DKH) Hamiltonian. The complete active space self-consistent field (CASSCF) method, followed by multi-reference configuration interaction (MRCI), was used to construct full potential energy curves (PECs). Spectroscopic constants as well as dipole moments are also reported. Spin-orbit coupling was subsequently calculated perturbatively via the spin-orbit terms of the Breit–Pauli Hamiltonian based on the CASSCF wavefunctions. Full spin-orbit coupled PECs were thus constructed for the low-lying terms of NiCu and NiAg. In addition, Kramers-restricted configuration interaction (KRCI) with the exact 2-component (X2C) Hamiltonian was utilised for the atoms and for the Cu-containing diatomic molecules. The influence of relativistic effects, spin-orbit coupling, core correlation effects and basis set incompleteness was probed for some selected cases. It is shown that for 23 out of the 24 diatomic molecules considered here a direct correspondence exists between the ground state terms (GSTs) of the monocations and those of the diatomic molecules with and . GRAPHICAL ABSTRACT

Keywords: lying electronic; low lying; terms diatomic; diatomic molecules; spin orbit; electronic terms

Journal Title: Molecular Physics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.