Abstract Some energy consumers require power on an anytime, all-year-round basis with a high level of certainty, including defense installations, isolated communities, and some industrial processes. For these customers, interruptions… Click to show full abstract
Abstract Some energy consumers require power on an anytime, all-year-round basis with a high level of certainty, including defense installations, isolated communities, and some industrial processes. For these customers, interruptions in electricity or heat can mean substantial financial loss or even loss of life. In the absence of grid-scale energy storage, a high level of power availability can be accomplished only through the robustness and redundancy of power generators. The NuScale small modular reactor design is well suited to provide highly available power because of several features related to both the nuclear steam supply system and the overall plant design. In analogy to Redundant Array of Independent Disks (RAID) systems used to provide highly reliable data storage, a NuScale plant can assure sustained power generation by virtue of its Redundant Array of Integral Reactors (RAIR).This paper describes the NuScale RAIR plant features and summarizes the results of a rigorous analysis of RAIR availability as a function of power or, conversely, the RAIR plant output power as a function of power availability. The analysis utilized the Matrix Laboratory code (MATLAB) and included probability distributions for the frequency and duration of module outages due to planned and unplanned events. The study also evaluated the impact of implementing turbine bypass rather than module shutdown and using one or more modules to supply house loads in the case of loss of off-site power (LOOP). Availability results are presented for a 12-module RAIR plant with and without turbine bypass enabled during a LOOP and for different possible connections to the off-site power distribution grid and dedicated service loads. Results indicate that a very high level of availability can be achieved at relatively high power output levels, regardless of turbine bypass and dedicated load connection, compared to the operating fleet.
               
Click one of the above tabs to view related content.