Solar activity and geomagnetic storm cause ionospheric disturbance and affect the GNSS positioning accuracy, which this effect cannot be ignored. The reliability depends mainly on differential code bias (DCB), when… Click to show full abstract
Solar activity and geomagnetic storm cause ionospheric disturbance and affect the GNSS positioning accuracy, which this effect cannot be ignored. The reliability depends mainly on differential code bias (DCB), when estimating the total electron content (TEC) with GNSS pseudorange observations. This study analyzes the variation characteristics of receiver DCB (RDCB) during a strong geomagnetic storm to determine whether the RDCB estimation is affected by space weather. Results show that the RDCB dispersion of low-latitude stations is larger than that of other areas. On the storm day, the RDCB standard deviation (STD) exhibits a peak characteristic and the number of RDCB abnormal stations is significantly more than that on quiet day. Analysis shows that the RDCB abnormality is caused by the ionospheric model misalignment during the ionospheric disturbance. By correcting the RDCB, the RDCB STD is reduced by 43.10%. Thus, the model correction can improve the estimation accuracy of RDCB during geomagnetic storm.
               
Click one of the above tabs to view related content.