LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

New methodology for fast prediction of wheel wear evolution

Photo by cokdewisnu from unsplash

ABSTRACT In railway applications wear prediction in the wheel–rail interface is a fundamental matter in order to study problems such as wheel lifespan and the evolution of vehicle dynamic characteristic… Click to show full abstract

ABSTRACT In railway applications wear prediction in the wheel–rail interface is a fundamental matter in order to study problems such as wheel lifespan and the evolution of vehicle dynamic characteristic with time. However, one of the principal drawbacks of the existing methodologies for calculating the wear evolution is the computational cost. This paper proposes a new wear prediction methodology with a reduced computational cost. This methodology is based on two main steps: the first one is the substitution of the calculations over the whole network by the calculation of the contact conditions in certain characteristic point from whose result the wheel wear evolution can be inferred. The second one is the substitution of the dynamic calculation (time integration calculations) by the quasi-static calculation (the solution of the quasi-static situation of a vehicle at a certain point which is the same that neglecting the acceleration terms in the dynamic equations). These simplifications allow a significant reduction of computational cost to be obtained while maintaining an acceptable level of accuracy (error order of 5–10%). Several case studies are analysed along the paper with the objective of assessing the proposed methodology. The results obtained in the case studies allow concluding that the proposed methodology is valid for an arbitrary vehicle running through an arbitrary track layout.

Keywords: wheel wear; methodology; prediction wheel; wear evolution

Journal Title: Vehicle System Dynamics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.