LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Train braking simulation with wheel-rail adhesion model

Photo from wikipedia

ABSTRACT This paper modelled the vehicles in conventional Longitudinal Train Dynamics (LTD) as 2D models that considers suspensions and wheel-rail contact. The Polach model was used as the adhesion model… Click to show full abstract

ABSTRACT This paper modelled the vehicles in conventional Longitudinal Train Dynamics (LTD) as 2D models that considers suspensions and wheel-rail contact. The Polach model was used as the adhesion model for faster computing speeds. A 2D train model was developed and solved using a parallel computing technique called Message Passing Interface. A train with the configuration of 1 locomotive + 120 wagons + 1 locomotive + 120 wagons was simulated in three different braking scenarios: emergency brake, full-service brake and minimum service brake. The same simulations were also conducted using a LTD model and the results are compared with those of the 2D train model. The comparisons indicate that: (1) wheelset rotational inertia needs to be considered in LTD models to achieve matched results with the 2D train model; (2) in most cases, simulated coupler forces from the 2D train model are slightly lower than those from the LTD model; (3) during minimum service brake and full-service brake, the differences of simulated coupler forces between the two models are lower than 100 kN; and (4) during emergency brake, a maximum difference of 266 kN was simulated, which accounts for 35% of the maximum force simulated by the LTD model.

Keywords: train model; adhesion model; model; wheel rail; service brake

Journal Title: Vehicle System Dynamics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.