ABSTRACT In this paper we give characterisations of FP-injective semirings (previously termed “exact” semirings in work of the first author). We provide a basic connection between FP-injective semirings and P-injective… Click to show full abstract
ABSTRACT In this paper we give characterisations of FP-injective semirings (previously termed “exact” semirings in work of the first author). We provide a basic connection between FP-injective semirings and P-injective semirings, and establish that FP-injectivity of semirings is a Morita invariant property. We show that the analogue of the Faith-Menal conjecture (relating FP-injectivity and self-injectivity for rings satisfying certain chain conditions) does not hold for semirings. We prove that the semigroup ring of a locally finite inverse monoid over an FP-injective ring is FP-injective and give a criterion for the Leavitt path algebra of a finite graph to be FP-injective.
               
Click one of the above tabs to view related content.