LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On tortkara triple systems

Photo by julianhochgesang from unsplash

ABSTRACT The commutator [a,b] = ab−ba in a free Zinbiel algebra (dual Leibniz algebra) is an anticommutative operation which satisfies no new relations in arity 3. Dzhumadildaev discovered a relation… Click to show full abstract

ABSTRACT The commutator [a,b] = ab−ba in a free Zinbiel algebra (dual Leibniz algebra) is an anticommutative operation which satisfies no new relations in arity 3. Dzhumadildaev discovered a relation T(a,b,c,d) which he called the tortkara identity and showed that it implies every relation satisfied by the Zinbiel commutator in arity 4. Kolesnikov constructed examples of anticommutative algebras satisfying T(a,b,c,d) which cannot be embedded into the commutator algebra of a Zinbiel algebra. We consider the tortkara triple product [a,b,c] = [[a,b],c] in a free Zinbiel algebra and use computer algebra to construct a relation TT(a,b,c,d,e) which implies every relation satisfied by [a,b,c] in arity 5. Thus, although tortkara algebras are defined by a cubic binary operad (with no Koszul dual), the corresponding triple systems are defined by a quadratic ternary operad (with a Koszul dual). We use computer algebra to construct a relation in arity 7 satisfied by [a,b,c] which does not follow from the relations of lower arity. It remains an open problem to determine whether there are further new identities in arity n≥9.

Keywords: algebra; triple systems; zinbiel; arity; tortkara triple; relation

Journal Title: Communications in Algebra
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.