LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Gorenstein projective modules and recollements over triangular matrix rings

Photo by neonbrand from unsplash

Abstract Let be a triangular matrix ring with R and S rings and an R–S-bimodule. We describe Gorenstein projective modules over T. In particular, we refine a result of Enochs,… Click to show full abstract

Abstract Let be a triangular matrix ring with R and S rings and an R–S-bimodule. We describe Gorenstein projective modules over T. In particular, we refine a result of Enochs, Cortés-Izurdiaga, and Torrecillas [Gorenstein conditions over triangular matrix rings, J. Pure Appl. Algebra 218 (2014), no. 8, 1544-1554]. Also, we consider when the recollement of restricts to a recollement of its subcategory consisting of complexes with finite Gorenstein projective dimension. As applications, we obtain recollements of the stable category and recollements of the Gorenstein defect category

Keywords: triangular matrix; recollements triangular; projective modules; gorenstein projective; matrix rings; modules recollements

Journal Title: Communications in Algebra
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.