LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modular quotient varieties and singularities by the cyclic group of order 2p

Photo from wikipedia

Abstract We classify all n-dimensional reduced Cohen-Macaulay modular quotient varieties and study their singularities, where p is a prime number and denotes the cyclic group of order 2p. In particular,… Click to show full abstract

Abstract We classify all n-dimensional reduced Cohen-Macaulay modular quotient varieties and study their singularities, where p is a prime number and denotes the cyclic group of order 2p. In particular, we present an example that demonstrates that the problem proposed by Yasuda has a negative answer if the condition that “G is a small subgroup” was dropped.

Keywords: cyclic group; modular quotient; group order; quotient varieties

Journal Title: Communications in Algebra
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.