It is known that the numerical invariants Betti numbers and Bass numbers are worthwhile tools for decoding a large amount of information about modules over commutative rings. We highlight this… Click to show full abstract
It is known that the numerical invariants Betti numbers and Bass numbers are worthwhile tools for decoding a large amount of information about modules over commutative rings. We highlight this fact, further, by establishing some criteria for certain semidualizing complexes via their Betti and Bass numbers. Two distinguished types of semidualizing complexes are the shifts of the underlying rings and dualizing complexes. Let C be a semidualizing complex for an analytically irreducible local ring R and set n := supC and d := dimR C. We show that C is quasi-isomorphic to a shift of R if and only if the nth Betti number of C is one. Also, we show that C is a dualizing complex for R if and only if the dth Bass number of C is one.
               
Click one of the above tabs to view related content.