ABSTRACT This paper studies the problem of designing a curtailed Bayesian sampling plan (CBSP) with Type-II censored data. We first derive the Bayesian sampling plan (BSP) for exponential distributions based… Click to show full abstract
ABSTRACT This paper studies the problem of designing a curtailed Bayesian sampling plan (CBSP) with Type-II censored data. We first derive the Bayesian sampling plan (BSP) for exponential distributions based on Type-II censored samples in a general loss function. For the conjugate prior with quadratic loss function, an explicit expression for the Bayes decision function is derived. Using the property of monotonicity of the Bayes decision function, a new Bayesian sampling plan modified by the curtailment procedure, called a CBSP, is proposed. It is shown that the risk of CBSP is less than or equal to that of BSP. Comparisons among some existing BSPs and the proposed CBSP are given. Monte Carlo simulations are conducted, and numerical results indicate that the CBSP outperforms those early existing sampling plans if the time loss is considered in the loss function.
               
Click one of the above tabs to view related content.