ABSTRACT This study considers the problem of testing for a parameter change in integer-valued time series models in which the conditional density of current observations is assumed to follow a… Click to show full abstract
ABSTRACT This study considers the problem of testing for a parameter change in integer-valued time series models in which the conditional density of current observations is assumed to follow a Poisson distribution. As a test, we consider the CUSUM of the squares test based on the residuals from INGARCH models and find that the test converges weakly to the supremum of a Brownian bridge. A simulation study demonstrates its superiority to the residual and standardized residual-based CUSUM tests of Kang and Lee [Parameter change test for Poisson autoregressive models. Scand J Statist. 2014;41:1136–1152] and Lee and Lee [CUSUM tests for general nonlinear inter-valued GARCH models: comparison study. Ann Inst Stat Math. 2019;71:1033–1057.] as well as the CUSUM of squares test based on standardized residuals.
               
Click one of the above tabs to view related content.