Abstract It is one of the important issues in survival analysis to compare two hazard rate functions to evaluate treatment effect. It is quite common that the two hazard rate… Click to show full abstract
Abstract It is one of the important issues in survival analysis to compare two hazard rate functions to evaluate treatment effect. It is quite common that the two hazard rate functions cross each other at one or more unknown time points, representing temporal changes of the treatment effect. In certain applications, besides survival data, we also have related longitudinal data available regarding some time-dependent covariates. In such cases, a joint model that accommodates both types of data can allow us to infer the association between the survival and longitudinal data and to assess the treatment effect better. In this paper, we propose a modelling approach for comparing two crossing hazard rate functions by joint modelling survival and longitudinal data. Maximum likelihood estimation is used in estimating the parameters of the proposed joint model using the EM algorithm. Asymptotic properties of the maximum likelihood estimators are studied. To illustrate the virtues of the proposed method, we compare the performance of the proposed method with several existing methods in a simulation study. Our proposed method is also demonstrated using a real dataset obtained from an HIV clinical trial.
               
Click one of the above tabs to view related content.