In this paper we propose a new class of Hermite series-based direct plug-in bandwidth selectors for kernel density estimation and we describe their asymptotic and finite sample behaviours. Unlike the… Click to show full abstract
In this paper we propose a new class of Hermite series-based direct plug-in bandwidth selectors for kernel density estimation and we describe their asymptotic and finite sample behaviours. Unlike the direct plug-in bandwidth selectors considered in the literature, the proposed methodology does not involve multistage strategies and reference distributions are no longer needed. The new bandwidth selectors show a good finite sample performance when the underlying probability density function presents not only ‘easy-to-estimate’ but also ‘hard-to-estimate’ distribution features. This quality, that is not shared by other widely used bandwidth selectors as the classical plug-in or the least-square cross-validation methods, is the most significant aspect of the Hermite series-based direct plug-in approach to bandwidth selection.
               
Click one of the above tabs to view related content.