In this paper, we discuss the problem of constant-stress accelerated life test when the failure data are progressive type-I interval censored. Both classical and Bayesian inferential approaches of the distribution… Click to show full abstract
In this paper, we discuss the problem of constant-stress accelerated life test when the failure data are progressive type-I interval censored. Both classical and Bayesian inferential approaches of the distribution parameters and reliability characteristics are discussed. In the classical scenario, the maximum likelihood estimates are approximated using the EM algorithm and the mid-point approximation method. Furthermore, the model's parameters are estimated by method of moments. Next in the Bayesian framework, the point estimates of unknown parameters are obtained using Tierney-Kadane's technique and Markov Chain Monte Carlo (MCMC) method. In addition, both approximate and credible confidence intervals (CIs) of the estimators are constructed. For illustration purpose, a Monte Carlo simulation is conducted to investigate the performance of the proposed estimators and a real data set is analysed.
               
Click one of the above tabs to view related content.