LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mn(II) and Co(II) mixed-ligand coordination compounds with acesulfame and 3-aminopyridine: synthesis and structural properties

Photo from wikipedia

Abstract Two mixed ligand complexes containing acesulfame (acs) and 3-aminopyridine (3-ap) ligands of Mn(II) and Co(II) were synthesized. The obtained compounds were characterized by various analysis methods. The geometries of… Click to show full abstract

Abstract Two mixed ligand complexes containing acesulfame (acs) and 3-aminopyridine (3-ap) ligands of Mn(II) and Co(II) were synthesized. The obtained compounds were characterized by various analysis methods. The geometries of complexes, C18H28MnN6O12S2 (1) and C18H32CoN6O14S2 (2), are distorted octahedra. Coordination of metal cations is provided by two molecules of 3-ap and four water ligands. In both structures, the 2+ charge of the metal required two monoanionic acs molecules located outside the coordination sphere. Complex 1 contains no hydrate water, while 2 contains two molecules of hydrate water. The crystal system of 1 is monoclinic and space group P21/c, while the crystal system of 2 is triclinic and space group P-1. Data on the removal of hydrate and crystalline waters in structures from thermal analysis curves support the described molecular structures. The bending vibrations of the bonds obtained from the FT-IR spectra match the crystal structure described. As a result of thermal analysis of both complexes, it was determined that the relevant metal cations remained in the reaction vessel as oxide (MnO and CoO) residues. Graphical Abstract

Keywords: coordination compounds; coordination; compounds acesulfame; acesulfame aminopyridine; mixed ligand; ligand coordination

Journal Title: Journal of Coordination Chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.