LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Selective oxidation of glycerol to mesoxalic acid by laccase/2,2,6,6-tetramethylpiperidine-N-oxyl system: Effect of process conditions and the kinetic modeling

Photo by unstable_affliction from unsplash

Abstract A pharmaceutical importance compound, mesoxalic acid, can be produced through selective oxidation of glycerol using laccase/2,2,6,6-tetramethylpiperidine-N-oxyl system. Since mesoxalic acid is the fourth product in the serial oxidation, identification… Click to show full abstract

Abstract A pharmaceutical importance compound, mesoxalic acid, can be produced through selective oxidation of glycerol using laccase/2,2,6,6-tetramethylpiperidine-N-oxyl system. Since mesoxalic acid is the fourth product in the serial oxidation, identification of the reaction conditions and its’ kinetic to maximize the production is essential. Hence, the objective of this study is to examine the effects of process conditions on the distribution of the products and the kinetic. Mesoxalic acid attained was 0.0712 M (>200% of control) at 19 °C, pH 5.5, 1:3 of glycerol/TEMPO ratio and TEMPO/laccase ratio of 9:3. To conclude, a moderate temperature that preserves the activity of laccase would favor the formation of mesoxalic acid. The serial chemical reactions could be expressed by a power law rate obtained via MATLAB through fitting of the experimental kinetic data. Oxidising from tartronic acid to mesoxalic acid was found to require higher activation energy (25.06 kJ/mol) as compared to other steps.

Keywords: oxidation glycerol; oxidation; laccase; selective oxidation; mesoxalic acid

Journal Title: Chemical Engineering Communications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.