ABSTRACT The main objective of this study is to apply an object-based image analysis (OBIA) approach to satellite image processing and determining crop residue cover (CRC) and tillage intensity. To… Click to show full abstract
ABSTRACT The main objective of this study is to apply an object-based image analysis (OBIA) approach to satellite image processing and determining crop residue cover (CRC) and tillage intensity. To achieve this goal, we collected ground truth data using line-transect method from 35 plots of farmlands with an area of 528 ha. Accordingly, Landsat Operational Land Imager (OLI) satellite image together with global positioning system (GPS)-based survey data set were considered for applying the OBIA methods and deriving CRC. To process the data, object-based image processing steps including segmentation and classification were applied to develop intelligent objects and establish classification using spectral and spatial characteristics of CRC. We developed three categories of rule sets including mean indices, tillage indices, and grey-level co-occurrence matrix (GLCM) texture features using the OBIA algorithms and assign class method. Results were validated against of ground control data set and were collected by GPS in field survey. Results of this study indicated that the brightness, normalised difference tillage index, and GLCM texture feature mean performed out as effective techniques. Overall accuracy and kappa coefficient (κ) were computed to be about 0.91 and 0.86; 0.93 and 0.90; 0.60 and 0.35, respectively, for the above-mentioned indices. The foregoing discussion has attempted to demonstrate that the remotely sensed data can be effective approach and substitute for ground methods, especially in large areas.
               
Click one of the above tabs to view related content.