LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization of soil deformation due to blast-induced liquefaction by UAV-based photogrammetry and terrestrial laser scanning

Photo from wikipedia

ABSTRACT Soil liquefaction due to an earthquake can lead to permanent soil deformation and reduction of load-bearing capacity that in turn could act on building stability. Since a quantitative evaluation… Click to show full abstract

ABSTRACT Soil liquefaction due to an earthquake can lead to permanent soil deformation and reduction of load-bearing capacity that in turn could act on building stability. Since a quantitative evaluation of post-liquefaction settlements is often very difficult, field scale liquefaction tests, carried out under controlled conditions, such as blast tests, are used to perform a correct quantitative analysis of the liquefaction phenomena. Among the significant parameters related to a blast test, there are the geometric ones, i.e. the extension of the area affected by the blast-induced liquefaction and the corresponding vertical displacements. This article shows the results of a blast test carried out at a trial site located in Mirabello (Ferrara, Italy) from a remote-sensing perspective. Data provided by aerial Structure-from-Motion photogrammetry, supported by terrestrial laser scanning measurements, were used to evaluate the soil deformation that, in the specific case study, aided a geological/geotechnical interpretation of the blast test results. In general, the proposed method can be used to characterize areas affected by blast-induced liquefaction, including those cases where blasting is used as ground improvement technique aimed at mitigating the seismic hazard.

Keywords: blast; induced liquefaction; liquefaction; soil deformation; blast induced

Journal Title: International Journal of Remote Sensing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.