LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unsupervised hyperspectral feature selection based on fuzzy c-means and grey wolf optimizer

Photo by aleexcif from unsplash

ABSTRACT Hyperspectral image (HSI) with hundreds of narrow and consecutive spectral bands provides substantial information to discriminate various land-covers. However, the existence of redundant features/bands not only gives rise to… Click to show full abstract

ABSTRACT Hyperspectral image (HSI) with hundreds of narrow and consecutive spectral bands provides substantial information to discriminate various land-covers. However, the existence of redundant features/bands not only gives rise to increasing of computation time but also interferes the classification result of hyperspectral images. Obviously, it is a very challenging problem how to select an effective feature subset from original bands to reduce the dimensionality of the hyperspectral dataset. In this study, a novel unsupervised feature selection method is suggested to remove the redundant features of HSI by feature subspace decomposition and optimization of feature combination. Feature subset decomposition is achieved by the fuzzy c-means (FCM) algorithm. The optimal feature selection is based on the optimization process of grey wolf optimizer (GWO) algorithm and maximum entropy (ME) principle. To evaluate the effectiveness of the proposed method, experiments are conducted on three well-known hyperspectral datasets, Indian Pines, Pavia University, and Salinas. Six state-of-the-art feature selection methods are used to compare with the proposed method. Experimental results successfully confirm the superior performance of our proposal with respect to three classification accuracy indices overall accuracy (OA), average accuracy (AA) and kappa coefficient (κ).

Keywords: feature selection; feature; selection based; grey wolf; fuzzy means

Journal Title: International Journal of Remote Sensing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.